The Magnetic Stress Tensor in Magnetized Matter

نویسندگان

  • OLIVIER ESPINOSA
  • ANDREAS REISENEGGER
چکیده

We derive the form of the magnetic stress tensor in a completely general, stationary magnetic medium, with an arbitrary magnetization field ~ M(~r) and free current density ~j(~r). We start with the magnetic force density ~ f acting on a matter element, modelled as a collection of microscopic magnetic dipoles in addition to the free currents. We show that there is a unique tensor T quadratic in the magnetic flux density ~ B(~r) and the magnetic field ~ H(~r) = ~ B − 4π ~ M whose divergence is ∇ · T = ~ f . In the limit ~ M = 0, the well-known vacuum magnetic stress tensor is recovered. However, the general form of the tensor is asymmetric, leading to a divergent angular acceleration for matter elements of vanishing size. We argue that this is not inconsistent, because it occurs only if ~ M and ~ B are not parallel, in which case the macroscopic field does indeed exert a torque on each of the microscopic dipoles, so this state is only possible if there are material stresses which keep the dipoles aligned with each other and misaligned with the macroscopic field. We briefly discuss the consequences for the stability of strongly magnetized stars.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Experimental Investigation of Magnetized Water Effect on Formation Damage

In oil industries, water injection into oil reservoirs for pressure maintenance, oil displacement, and oil recovery is a common technique. Formation damage during water injection is a major problem in this process. Formation damage from the incompatibility of formation water (FW) and injection water (IW) causes a reduction in the permeability around the injection wells. Therefore, it is necessa...

متن کامل

The Effect of Magnetic Water and Irrigation Intervals on the Amount of the Nutrient Elements in Soil and Aerial Parts of Periwinkle (Catharanthus roseus L.)

The periwinkle with the scientific name of Catharanthus roseus is one of the most important ornamental plants of the Apocynaceae family. In order to evaluate the effect of different waters on the amount of the nutrient elements in soil and aerial parts of Catharanthus roseus, a factorial experiment based on completely randomized design was conducted in 3 replications. Experimental treatments we...

متن کامل

Evaluation of White Matter Tracts in Autistic Individuals: A Review of Diffusion Tensor Imaging Studies

Introduction: Many cognitive and social deficits in autism are caused by abnormal functional connections between brain networks, which are manifested by impaired integrity of white matter tracts. White matter tracts are like the "highways" of the brain, which allow fast and efficient communication in different areas of the brain. The purpose of this article is to review the results of autism st...

متن کامل

Fluid description of relativistic, magnetized plasma

Many astrophysical plasmas and some laboratory plasmas are relativistic: either the thermal speed or the local ow speed (in a convenient frame) approaches the speed of light. Many such plasmas are also magnetized, in the sense that the thermal Larmor radius is smaller than gradient scale lengths. Relativistic MHD, conventionally used to describe such systems, requires the collision time to be s...

متن کامل

Rotating neutron star models with magnetic field

We present the first numerical solutions of the coupled Einstein-Maxwell equations describing rapidly rotating neutron stars endowed with a magnetic field. These solutions are fully relativistic and self-consistent, all the effects of the electromagnetic field on the star’s equilibrium (Lorentz force, spacetime curvature generated by the electromagnetic stress-energy) being taken into account. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003